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We explicitly obtain, for K(x, y) totally positive, a best choice of functions
u, ,... , Un and V, , ... , Vn for the problem minu ., •. <J~ <J~ I K(x, y) - I:;~l u;(x)
V,(Y) [ dyP dx)I/P, where u, E prO, 1], V, E D[O:n: i = 1,..., n, and p E [I, <Xl I.
We show that an optimal choice is determined by certain sections K(x, t l ), ... ,

K(x, tn), and Kh, y), ... , K(rn , y) of the kernel K. We also determine the n­
widths, both in the sense of Kolmogorov and of Gel'fand, and identify optimal
subspaces, for the set Je"r,p = {f:j(x) = I::~I aik.(x) + f~ K(x, y) hey) dy,
(al " •• , ar) E [Rr, II h lip < l}, as a subset ofLq[O, II, with eitherp = <Xl and q E [1, <Xl I,
or p E [I, <Xl I and q = I, where {k,(x), ... , k.(x), K(x, y)} satisfy certain restric­
tions. A particular example is the ball fJiJr,p = {f:f<r-ll abs. cont. on [0, 1],
lIj<r) lip < I} in the Sobolev space.

1. INTRODUCTION

Our main motivation for this work is the classical result of Schmidt [11] (see
also Courant and Hilbert [1, p. 161]) concerning the best approximation of
an integral operator by finite rank operators. His problem begins with a real­
valued kernel K(x, y) in V of the unit square [0, 1] X [0, 1]. The Schmidt
numbers of the associated integral operator

(Kf)(x) = rK(x, y)f(y) dy
o
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are defined as the eigenvalues of the operator KTK (KT(X, y) KCl'. x), the
transpose of K) given by

with

and

The Hilbert-Schmidt decomposition of K(x, y) is

i,j = 1,2, ....

00

K(x, y) O~" I 1Mx) 1>;{y)
i=l

a.e., (1.2)

where !f;i = K1>i .
E. Schmidt proved that the best mean square approximation to K(x, y) on

the square [0, I] X [0, 1] by functions of the form

U1(x) v1(y) -~- ... + un(x) v,,(Y), Ui, Vi E V[O, I] (1.3)

is obtained by simply truncating the sum (1.2) after the nth term and the error
of approximation is (L:+l \)1/2. In other words,

1 1 1 n 1
2

IJ;~~ f
o
f
o

K(x, y) - i~ Ui(X) Vi(Y) dx dy

1 1 I n 1
2

= f f K(x, y) -I !f;i(X) 1>/Y)1 dx dy
o 0 ,~1

00

= I \"
n+1

This result, in the language of operator theory, states that for the trace norm
on the class of Hilbert-Schmidt operators (1.1), given by

(

00 )1/2
I K 12.2 = (trace(KTK))1/2 = t..\; ,

the best rank n approximation to K is

n

Knf = I !f;;{j, 1>i)'
i~1
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It is remarkable that this extremal property of the series (1.2) also remains
true when we give K the usual operator norm defined by

II K 112.2 = sup II KII 12 = ,\~/2,
Ilf112 ";;1

II I 112 = (f~ I j(x)12 dX)I/2. The fact that K n is the best rank n approximation
to K in the operator norm as well, is a familiar result on s-numbers of compact
operators on Hilbert spaces, see Pietsch [9]. For the possibility of other
choices of best rank n approximations to K in the operator norm see [4].

The problem of approximating real-valued functions K(x, y) in various
norms by sums of products of (real-valued) functions of one variable (see
(1.3» and its relationship to n-widths is the subject of this paper. In Section 2,
we solve this problem for mean approximation

I KiLl = Jl f i K(x, y)1 dx dy.
o 0

We find that a best choice of functions Ui , ... , Un , and Vi , , Vn is deter-
mined by certain sections K(x, gl),"" K(x, gn) and Kh ,y), , K(Tn , y) of
the kernel K, provided that K is a nondegenerate totally positive kernel. This
result includes the case announced earlier in [7].

In Section 3, we consider the n-widths of certain subsets of LP. In partic­
ular, for the Sobolev space WpT defined by

I T-l 1 1

WpT = /I:j(x) = i~ aixi + (r _ I)! I
o

(x - y)~-IPT)(y)dy,

(ao, a1 , ••• , ar - 1) E IW, llpr) lip < col '

we compute the n-width in the sense of Kolmogorov and Gel'fand and
identify optimal subspaces for the set

!JlT.1J = {f:fE W1JT, Ilj<Tl 111J ,s;; I}

considered as a subset of Lq[O, 1] with either p = 00 and q E [1, co], or
p E [1, co] and q = 1. Recall that the Kolmogorov n-width is defined by

dn(!Jlr •1J ; Lq[O, 1]) = inf sup inf III - g Ilq,
X n !Ef!dr.'P gEXn

where X n is any n-dimensional linear subspace of Lq[O, 1], and the Gel'fand
n-width is defined by

dn(!JlT • 1J ; Lq[O, 1]) = inf sup IIIllq,
L n fE:JIJr ••r.Ln

where L n is any subspace of UfO, 1] of codimension n.
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In Section 4, we return to a discussion of the 2-dimensional approximation
problem considered in Section 2, but for mixed (LP, Lq) norms. Lower bounds
for the error are given in terms of certain Kolmogorov n-widths of the
integral operator (1.1). The results of Section 3 allow us to show that these
lower bounds are sometimes attained. I n particular, under the assumptions
of Section 2 on the kernel K, we are able to obtain a best choice of functions
UI , .•• , Un and VI, ... , Vn for the problem

min (f (f IK(x, y) - £u;(x) Vi(Y)! dY')"' dX')li
P

Up vtOO i,-,-l "

where Ui E LP[O, 1], Vi E V[O, 1], i = 1, ... , n, p E (1, 00]. As in Section 2, an
optimal choice is determined by certain sections K(x, tl)"'" K(x, tn) and
K(TI ,y), ... , K(Tn ,y) of the kernel K. The results of this section extend those
discussed in Section 2.

2. MEAN' ApPROXIMATION'

In this section we find

I I I n IEl,l(K) = ~~~ i i K(x, y) - t! u;(x) vi(y) dx dy, (2.1)

where the minimum is taken over Ui , Vi E V[O, 1], i = 1,... , n, and identify
an optimal choice of functions for a certain class of kernels K.

DEFINITION' 2.1. A real-valued kernel K(x, y) defined and continuous on
[0, 1] X [0, 1] is called totally positive if all its Fredholm minors

are nonnegative for °,,::;; Sl < ... < S", ,,::;; 1, 0"::;; tl < ... < tm ,,::;; 1, and all
m~1.

Our first theorem below requires a condition on K(x, y) which is stronger
than total positivity. This theorem deals with an extremum problem whose
solution is guaranteed in a closed simplex. However, we wish to assert that
the extremum actually lies within the interior of the simplex. Thus to avoid
the possibility that it occurs on the boundary of the simplex we require K
to be nondegenerate totally positive. Before defining this requirement on K,
let us state the theorem.
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To this end we define, An = {s: s = (Sl ,... , Sn), °= So < Sl < ... < Sn <
Sn+l = I}, the step function

hsCx) = (-I)i, Si :(; X < Si+l' i == 0,1,... , n,

and also let II fill = f~ If(x) Idx.

THEOREM 2.1. Let K be a nondegenerate totally positive kernel. Given any
n ;?; 1, there exists agE An , such that for any t E An ,

Moreover, Khe has exactly n distinct zeros in (0, 1) at 'T1 ,... , 'Tn, with 'T =
('T1 ,... , 'Tn) EAn and

sgn Khe = hT ,

sgn KThT = he .

(2.2)

(2.3)

(When Khe or KThT are zero in (2.2) or (2.3) we assign a value to the sgn so
that the equations are valid.)

The proof of this theorem requires information on the number of zeros of
the function Kht . The basic fact needed is the following lemma (see [5, 6, 8]
for similar results.)

LEMMA 2.1. Let K be a totally positive kernel and tEAm, be given. IfKht

vanishes at sEAm, then for any x E [0, 1] either (-I)i (Khj)(x) > 0, where
Si :(; x :(; Si+1 , for some i, °:(; i :(; m, or the functions K(Sl , y), ... , K(sm , y),
K(x, y) are linearly dependent on [0, 1].

Proof If x E [0, 1]\{sl ,... , sm} and Si :(; x :(; si+1 for some i, °:(; i :(; m,
and K(Sl, y), ... , K(Si' y), K(x, y), K(Si+l, y), ... , K(sm, y) are linearly in­
dependent then there exist nontrivial constants CX1 , ... , CXm+l such that
cxj(-I)i+l ;?; O,j = 1,2,... , m + 1, and the function

satisfies (-I)i u(y) ~ 0, t i :(; Y :(; t i+! , i = 0, 1,... , m. This fact is proven by
"smoothing" the kernel K so that the functions K(Sl, y), ... , K(Si , y), K(x,
y), ... , K(sm, y) form a complete Chebyshev system. We will not go into the
details of this standard technique. Let us observe that the function u(y) is
nontrivial by virtue of the linear independence of K(Sl, y), ... , K(Si ,y),
K(x, y), ... , K(sm, y).
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We use the function u(y) as follows:

Cii+l(Kht)(x) =c Ci1(Kh t)(Sl) + ... + cXi(Kht)(s;) + ~i71(Kht)(x)

cXm+l(Kht)(s",)

= JI u(y) ht(y) dy == ru(Y)i dy > O.
o n

Thus the lemma is proven.
The relationship of the zeros of Kh t to linear dependence as expressed

above, leads us to

DEFINITION 2.2. A totally positive kernel K is called nondegenerate
totally positive on [0, I] provided that

1. For every m ? I and every choice of t-point, tEA"" and s-point
sEA"" the sets of function {K(S1' y), ... , K(s"" y)}, {K(x, t1), ... , K(x, t",)} are
linearly independent on [0, 1].

2. For every m ?;: °and every choice of t-point and s-point, as above,
one of the four sets of functions {K(O, y), K(S1' y), ... , K(srn, y)}, {K(S1 , y), ... ,
K(srn, y), K(l, y)}, {K(x, 0), K(x, t1), ... , K(x, t",n, {K(x, t1), ... , K(x, trn), K(x, In
is linearly independent.

Note that whenever K is nondegenerate totally positive then so is KT. The
kernel K(x, t) = (x - t):-1, r ? 2, is nondegenerate totally positive, see [12].
However, the totally positive kernel

K(x, t) = x(l - t),

0= t(l - x),

o~ x ~ t,

t ~x ~ I,
(2.4)

is not because it vanishes everywhere on the boundary of the unit square and
hence Property 2 is not satisfied. Property 2 is needed to insure that zeros of
Kh t occurring at the ends of the interval [0, 1] may be taken into considera­
tion. Property 1, which holds for (2.4), is insufficient for this purpose.

We draw the following conclusion from Lemma 2.1 which is necessary in
the proof of Theorem 2.1.

LEMMA 2.2. Let K be a nondegenerate totally positive kernel. Then for
every n ? °and t-point, t E An , the function Kh t has at most n zeros in (0, 1).
IfKht has exactly n zeros at sEAn, then

(i) these zeros are sign changes,

(ii) the orientation of Kht is governed by the equation sgn Kht = hs ,

(iii) at least one of the numbers (Kht)(O), (Kht)(l), (KThs)(O), (KThs)(l) is
not zero.
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We are now ready to prove the theorem.

Proof The minimum of the continuous function F(t1 , ••• , tn) = II Kh t 111 is
achieved on the closed simplex 0 ~ t1 ~ ... ~ tn ~ 1. Hence there are
values 0 < gl < ... < gp < 1, 0 ~ p ~ n, such that II Kh~ 111 ~ II Kh t 111 for
all t = (t1 '00" tn). We claim that p = n. To prove this we observe that by
Lemma 2.2, Kh~ has at most p distinct zeros in (0, 1). Hence F is a differenti­
able function and by the optimality of Kh~ we have

a 1o = ~F(tl '00" tp)lt~" == 2(-1)1+1 J sgn(Kh,,)(x) K(x, gl) dx,
u~ 0

I == 1"00' p. (2.5)

Let 0 < T 1 < ... < T m < 1, 0 :( m ~ p, denote the location of the sign
changes of Kh" , and let fL be a sign, fL2 = 1, such that fL(Kh,,)(x) hix) ;? 0,
x E [0, 1], T = h '00" Tm ). Then upon simplification (2.5) reads (KThT)(gi)
=, 0, i = 1,00', p, and so Lemma 2.2 implies p ~ m. We conclude that
p = m and again by Lemma 2.2, sgn Kk~ = hTand sgn KThT = h~. We will
now prove that p = n. The idea is to show that if p < n then (Kk~)(O) =

(Kh~)(I) = (KThT)(O) = (KThT)(I) = 0 which contradicts Lemma 2.2. Let us
deal with the left hand endpoint as the argument for the right hand endpoint
is similar. By Lemma 2.2 we know that (Kh~)(O) ;? 0 and (KThT)(O) ;? O. Now,
ifp < n then for all E', 0 < E' < gl ,

.1

j I(Kh~)(x)1 dx = F(gl ,... , gp)
o

~ F(E', gl ,... , g,,)

= f !(Kh,,){.\") - 2 fa' K(x, y) dy Idx. (2.6)

The function P.(x) = (Kh~)(x) - 2 f~ K(x, y) dy has, by Lemma 2.2, at most
p + 1 zeros. Furthermore, for E' small, P, has p sign changes near the sign
changes of (Kh~)(x) and slightly to the left of the first sign change of Kh~ , P,
is positive (because Kh~ begins positively). Now, if p. has no more zeros in
(0,1), then sgn p. = hT(d ,for some 0 < T 1(E') < ... < Tp(E') < 1 and Ti(E')--+

Ti as E' --+ 0+. Thus

F(E', gl '00" gp) = f hT(,)(x)(Kh~)(x) - 2 f (KThT(,»)(y) dy

~rI(Kh~)(x)1 dx - 2r (KThT(.»)(y) dy
o 0
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For £0 sufficiently small, KThd<l(Y) 0, a < y < Eo This inequality contradicts
(2.6) and we conclude that P E has exactly one more zero in (0, I). Moreover,
since P E -Khl;(<l where ~(E) = (£0, ~1 ,... , ~p), Lemma 2.2 implies that this
zero is a sign change, that it must be the first sign change of P E and to the left
of it P E is negative in (0, I). Hence we conclude that for £0 small, P(O; E) O.
Thus (Khl;)(O) ~ aand so it follows that (Khl;)(O) c O. Returning to (2.6) we
have by an easy computation

whence we conclude (KThT)(O) = O. We now apply the above analysis to the
right hand endpoint to obtain (Khl;)(1) O~ (KThT)(l) = O. This contradicts
Lemma 2.2 and the theorem is proven.

Let us remark, that if K is totally positive and only Property 1 of Defini­
tion 2.2 is satisfied, then we may show that p defined above is ?: n - I. This
is accomplished by comparing F(~l ,... , ~p) to F(~ - £0, ~ + £0, ~1 , ... , ~1») for
any ~, a < ~ < ~1 and £0 sufficiently small.

The following corollary, although not explicitly used in the solution of the
mean approximation problem (2.1), is an expression of the symmetry of
Theorem 2.1 under replacement of K by KT.

COROLLARY 2.1. LetT = (T1 ,... , Tn) be the T-point defined by Theorem 2.1.
Then

for every S EO An .

Proof Given any S EO An there then exists a t EO An' such that (Kht)(si) =cc 0,
i = 1,2,... , n, see [8].

Hence by Lemma 2.2, sgn Kh t = hs and by the optimality of ~ = (~1 ,... , ~n)
given by Theorem 2.1, we have

II KThT111 = (KThT, hI;) = Ii Khl; IiI

~ II Kht 111 = (h s , Kht) = (KTh s , ht)

~ II KTh s 111 •

To proceed further we require one final lemma (see [5, 6, 8] for similar
results).

LEMMA 2.3. LetT = (T1 ,... , Tn), ~ = (~1 ,... , ~n) be defined by Theorem 2.1.
Then

K (T1 , , Tn) > O.
~1 , , ~n

Proof Suppose to the contrary that there exist nontrivial constants
(Xl , ... , (Xn such that the function u(x) = L~~l (XiK(X, ~i) vanishes at T1 ,... , Tn.
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There exists a z E (0, 1) such that u(z) F 0. Thus for some constant c,
Khf - cu vanishes at T1 ,... , Tn, Z. Let v(y) be a nontrivial function, v(y) =

f31Kh, y) --:- '" -+- f3nK(Tn, y) -+- f3n+1K(z, y) such that (-I)i v(y) ~ 0,
~i ~ Y ~ ~i+1' i = 0, 1, ... , n. Hence

n°= L f3;(Kh i;)(Ti) - CU(Ti» -+- f3n+1«Khf)(z) - cu(z»
i~l

= r['(y) hf(y) dy - C f <XiV(~i)
° i~l

= s: I v(y)! dy > 0.

This contradiction proves the lemma.
We are now prepared to state and prove the main theorem of the section.

To this end, observe that the function

(2.7)

may be expressed as

n

= K(x, y) - L CiiK(X, ~i) K(T;, y),
i,j=l

where

Cij = (-1 )i+i K (7"1 , , 7";_1 , T;+1 , , Tn)/K (7"1 , , 7"n) .
~1 , , ~i-1 , ~i+l , , ~n ~1 , , ~n

Therefore,

1 1 I n IEl.l(K) = ~~~ J
o
1 K(x, y) - ;;1 ll;(X) Vi(y) dx dy

f
1 1

< f i E(x, y)1 dx dy.
'0 °

Actually, we have

(2.8)

THEOREM 2.2. If K is a nondegenerate totally positive kernel and El,l(K) is
as defined in (2. I), then

r.

1 1

El.1(K) = f I E(x, y)1 dx dy = Ii Kh f I!]
'0 °

1 1 I n I= f f K(x, y) - ~ UiO(X) ViO(y) dx dy,
° ° ,~1
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where UiD(X) Cc K(x, ~i) and ViO(y) L;~l CUK(T; , y), i ,= I, ... , n, and the

{~iE', h}~ are as defined in Theorem 2.1.

Proof By the Hobby-Rice theorem (2], we know that given any n
functions VI, •.. , Un EO LI[O, 1] there exists a t EO AI;, 0 ~ k ~ n, such that
f~ v;(y) ht(y) dy =, 0, i =~ 1,2,... , n. Let hex, y) = hiy) sgn(Kht)(x). Then for
U1 , ... , Un EO LI[O, 1],

1 1(' n )LLK(x, y) - i~ Ui(X) D;(Y) h(x, y) dx dy

1 1 I n I~ JJ K(x, y) - L U;(X) V;(y) dx dy.
o 0 ,=1

Thus, since U1 ,... , lin, VI"'" Vn were arbitrarily chosen in L1[0, 1], we have

Also, we have, in view of (2.2), (2.3) and (2.7),

rrI E(x, y)1 dx dy
o D

= J1 rE(x, y) hlx) hf(y) dx dy
o '0

=0 f (Kh<)(x) hT(x) dx - ~ cilKThT)(~i)(Khf)(Ti)
1.,)

= CI(Khf)(x) dx = Khf Ill,
'0

which together with (2.8) finishes the proof.
This theorem states that the best approximation in the mean on the

square [0,1] X [0, 1] may be accomplished by interpolating K(x, y) with
the sections K(r;, y), K(x, ~j) at (Ti , ~j), i,j = 1,... , n.

The condition of nondegenerate total positivity was imposed so as to
insure that 0 < ~1 < ... < ~n < 1, and 0 < T 1 < ... < Tn < 1. However,
ifK(x, y) is only totally positive on [0, 1] X [0, 1], and if there exist 0 ~ Xl <
... < X n ~ 1 and 0 ~ Y1 < .. , < Yn ~ 1 such that

K (X,1 ,..., ~n) > 0
}1 ,···,}n
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(if not, then El,l(K) = 0), then by "smoothing" K(x, y), both with respect
to x and y, it is possible to prove that El,l(K) = II Kh. Ill, where as

in Theorem 2.1, II Kh. III = info<"'<"'<"n<lll Kh1111 .
Specifically, the method of smoothing we have in mind replaces K(x, y) by

1 1

K(x, Y) = f
o
1G.(x, a) K(a, T) G.(T, y) da dT,

where

1 [1 ( x - Y )2]
G.(x, y) = E(27T)l j 2 exp - 2" E ' € >0.

Then K. is strictly totally positive (because G. is) and thus certainly satisfies
the hypotheses of Theorems 2.1 and 2.2. Since K. converges to K as € ~ 0,
the above assertion follows directly.

In the remainder of the paper we will show the relationship of the previous
problem, as well as a general version of it for mixed (LP, Lq) norms (see
Section 4), to certain Gel'fand and Kolmogorov widths. As these results on
widths are of independent interest we devote the next section to their discus­
sion.

3. WIDTHS

In this section we compute exactly the Kolmogorov and Gel'fand widths
and identify optimal subspaces for certain subsets of LP[O, 1], 1 ~ p ~ 00.

The norm of/E LP is denoted by II/lip andp' is used to denote the conjugate
exponent defined by lip + lip' = 1.

We begin by recalling the definition of Kolmogorov and Gel'fand n­
widths. Let X be a normed linear space, 'll a subset of X, and X n any n­
dimensional linear subspace of X. Then, the n-width of'll relative to X, in the
sense of Kolmogorov, is defined to be

dn(~(; X) = infsup inf II x - y II,
X n XEm: YEXn

and X n is called an optimal subspace for ~( provided that

dnC~(; X) = sup inf I! x - y II
XE\}( yEXn

The n-width of ~( relative to X, in the sense of Gel'fand, is defined as

dn(~(; X) = inf sup Ii x II ,
L n xE"2{nLn
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where L n is any subspace of X of codimension n. If

dn(I2(; X) sup .Y,
xE'1lnLn

then L n is an optimal subspace for the Gel'fand n-width of 121.
Our sets have the following form. Given functions kl(x), ... , k,.(x) defined

and continuous on [0, 1], and a kernel K(x, y) jointly continuous in x, y E

[0, 1], we define

:£",JI = \ £ajkj(x) +rK(x, y) hey) ely : (a l , ... , a,.) EO R1', Ii h I)) ~ 1i. (3.1)I J~l 0 ]

The prototype of this class of sets is the choice kj(x) = xH,j = 1,... , rand
K(x, y) = (l/(r - l)!)(x - y):-l. In this case :f,.,p is simply the ball

8#1'.,) = {f: fir-I) abs. cant., II !<r) lip ~ I}. (3.2)

In the general case, we will consider :f,.,p as a subset of Lq[O, I] for some
q, I ~ q :S; w, and as such compute its Kolmogorov and Gel'fand n-widths
when certain addition hypotheses are satisfied.

For our purposes, in Section 4, where we study mixed (L)), Lq) approxima­
tion to K(x, y) by functions of the form (1.3), we will only need the results of
this section when r = O. However, for the sake of (3.2) we deal here with
r > 0 as well and require that the following properties hold.

1.

K (Xl'"'' X,., X r+l ,,,., X r .: m )

1,,,., r, Yl ,... , Ym

I

kl(Xl) kr(Xl) K(xl , Yl) K(xl , Ym) I

= klC;r+m)'" k,(x, -m) K(x: m' Yl) K(X,.+~ ,Ym)

is non-negative for any points 0 ~ Yl < ... < y", ~ 1, 0 ~ Xl < ." <
X 1'+m ~ I and integer m ~ O. Furthermore, we require that for any given
y-point 0 < Y1 < .,. < Ym < 1 (x-point, 0 < Xl < ... < Xr+m ~ I) the above
determinant is not identically zero for all x-points (v-points).

II. {ki(X)}i~lr is a Chebyshev system on (0, I), i.e., for any 0 < Xl <
... < x,. < I,

K (Xl ,,,., .\'1') > O.
1, ... , r !

In particular, when r = 0, Property J implies that K is a nondegenerate
totally positive kernel since Property I above implies that the functions
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K(x1 ,y),... , K(xm ,y), K(I, y) are linearly independent on [0, 1]. This
property is more restrictive than the requirement of nondegenerate total
positivity and we could relax the hypotheses I and II somewhat in what
follows. However, for us it is important that these properties hold for the
special case (3.2), see [12], and they shall always be assumed to hold in this
section.

3.1. Kolmogorov n-width, p = 00, 1 ~ q ~ 00

Our objective is to find

dn(X"."oo; U[O, 1]) = inf sup inf Ilf - g Ilq.
X n fEX'r,oo gEXn

The computation of the n-width when q = 00 was done in [5] and so we
here restrict ourselves to considering q < 00.

We introduce the class

where Qr = [k1 , ... , kr]([fl ,· .. ,fm] = the linear space spanned by It ,... ,fm)·
A typical element of f?lJn will be denoted by P or by Pt ' Thus if Pt E f?lJn , then
Pt = k + Kht for some k E Qr .

THEOREM 3.1. Given integers m, r ~°and a number q, 1 ~ q < 00, then
there exists gE Am and k E Qr such that P! = k + Kh~ satisfies

(3.3)

for every P E f?lJm • Moreover, P! has exactly m + r simple zeros in (0, 1) at°< T 1 < .. , < Tm+r < 1 and hence

sgn P:(x) = (-IY hT(x), (3.4)

sgn (f [P!(X)!q-l hT(x) K(x, y) dX) = (-IY hiy), (3.5)

and

i = 1,... , r. (3.6)

Note that when r = 0, q = 1, and m = n, this theorem reduces to
Theorem 2.1. The proof of the general case follows the proof of Theorem 2.1
with only slight modifications. The details require the following generalized
versions of Lemma 2.2.



64 MICCHELLI AND PINKUS

LEMMA 3.1. For given m, r ?c 0, P E gom has at most m + r zeros in (0; 1).
If P has exactly m + I' zeros at s E A m+r , then these zeros are sign changes,
the orientation of P is governed by the equation sgn P = (-I)T h", and
PO) -F O.

Proof Let P =oo k + Kh t , k E Qr , tEAm' Assume P has at least r zeros
(otherwise there is nothing to prove) and let s = (Sl ,... , Sf)' 0 < '\1 < .. , <
Sf < 1. Then it follows that P =-~ lht , where lex, y) is the compound kernel

l(x y) = K (1 , ,Sr' X)jK ('Sl , , Sr)
, 1, , r, y 1, , I'

Now, the kernel J(x, y) = (-I)T h.(x) lex, y) is totally pOSItlve, because
Sylvester's determinant identity tells us that if 0 ~ Xl < ... < XI ~ 1,
o~ Y1 < ... < Yl ~ 1, then

J (Xl , , XI) = K (Zl, . . . ,Z!+r)jK (Sl , , ST) ,
Y1 , , Yt I, ... , r, Y1 ,... , YI 1, , r

where 0 ~ Zl < ... < ZHr ~ 1 are the points of the set {Sl , , Sr , Xl ,... , XI}
arranged in increasing order. (Note that J(Si , y) ==0 0, i = 1, , r.) Now, if P
also vanishes at 0 < STH < ... < Sr+m < 1, (say Sr < SrH)' then it follows
directly from Lemma 2.1 and Property I that (-IY (Jht)(x) > 0 for X E

(Sr+i , Sr+iH)' i = 1,... , m, (Jht)(l) -F 0, and (Jht)(x) > 0 for X E (Si , Si+1),
i = 0, 1,... , r. These facts immediately imply the results of the lemma.

We need another lemma similar to Lemma 3.1 which also reduces to
Lemma 2.2 in the case I' = O.

LEMMA 3.2. Given tEAm and g(x) E Loc[O, 1] such that sgn g = ht .
Assume that (g, k i) = 0, i = J, ... , r. Then m ~ r, and KTg has at most
m - r zeros in (0, 1). If KTg has m - r zeros at S E A m_r then the zeros are
sign changes and sgn KTg = (-1)T hs •

Proof. The fact that (g, k i) = 0, i = 1"'0' r, implies that g has at least r
sign changes is a well-known result obtained from the Chebyshev property
of {ki(X)}~ 0 The remaining proof is quite similar to that of Lemma 2.1.
Assume (KTg)(Si) = 0, i = I,... , m - r. Since klx), ... , krCx), K(x, Sl),""
K(x, sm_r), K(x, y) are linearly independent for Y E (0, I)\{sl , ... , sm-_r}, there
exists a nontrivial linear combination u(x) = :L;=1 aiki(x) + :L~~~r biK(x, Si)
+ cK(x, y) such that u(x) ht(x) ~ 0, X E [0,1]. Since C(KTg)(y) = (u, g) > 0,
it follows that (KTg)(y) -F °for y E (0, I)\{sl , ..., sm_r}o It is easily shown, by
determining the sign of c, that sgn(KTg) = (-1)' h. in (0, 1).

We are now ready to prove Theorem 3.1.
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Proof The existence of a minimum Pt = k + Kht , where g = (g!> ..., gp),
0< gl < ... < gp < 1, 0 ~p ~ m, follows directly. Using the minimality
ofgwe have that

and

r\pi(X)\<I-l sgn pi(x) k;(x) dx = 0,
o

i = 1,... , r

i = 1,... ,p.

Let 0 < 7"1 < '" < 7"1 < 1, I ;> r, be the location of the sign changes of PC:
on (0, 1). Then according to Lemma 3.1, I ~ p + r, while Lemma 3.2 implies
that I;> p + r. Thus 1= r + p and by Lemma 3.2, sgn Pi = (-IY hr.
Moreover, if p < m then the function pt(e) , geE:") == (gl ,"', gp, 1 - E) may be
compared to Pt for E small and positive to show, as in the proof of Theorem
2.1, that Pi(I ) = 0, This conclusion contradicts Lemma 3.1 and hence
p=m.

We now turn to the computation of the Kolmogorov n-width of Jt;.,oo .
Let rand q be as given, and apply Theorem 3.1 for each n ;> r with m =

n - r, to obtain points 0 < gl < ... < gn-r <: 1,0 < 7"1 < ... < 7"n < 1
and a function Pi which satisfies (3.3)-(3.6). Since Pi plays a distinguished
role in computing the n-width of Jt;.,oo we give it the special designation
gn.r.q(x). We will also use the notation g",(x) for gn.r.aCx) suppressing its
dependence on rand q. In addition, we define the n-dimensional subspace

THEOREM 3.2.

dn(Jt;..oo ; Lq[O, ID = 00,

= Ilgnllq,
n ~ r,

n ;> r,

andfor n ;> r, Xno is an optimal subspace for the n-width ofJt;..oo .

Proof Since the subspace Qr spanned by k 1 , ... , k r is contained in Jt;..oo ,
the n-width of Jt;..oo , when n < r, must be 00. Now, suppose n ;> r. We will
first prove that II gn Ilq is a lower bound for the n-width. We proceed as
follows: The only n-dimensional subspaces in contention for approximating
Jt;..ro are those which contain Qr . Let Xn be such a subspace and assume for
the moment that q > 1. Let X n be spanned by the functions k 1 , ... , k r , U1 , ... ,

Un - r •

For every z = (ZI , , zn-r+1) with L~::+1 Zi2 = 1, we define to(z) = 0,
ti(z) = L:=1 zl, i = 1,2, , n - r + 1 andfzCy) = fey; z) = sgn Zj ,for tj _ 1(z)
< y < t;(z),j = 1,2,..., n - r + 1. Note that fz(Y) = ±hs(Y) for some



66 MICCHELLI AND PINKUS

s eAk , 0 ~ k ~ n - r. Moreover, Iz(Y, -z) -f(y, z) for all z and y.
(This particular odd embedding of the surface of the n - r + I sphere into
the set of extreme points of the unit ball in L'lC is used in [10] to simplify the
proof of the Hobby-Rice theorem [2].)

The function Kfz has a unique best approximation in U[O, I] from the
subspace X n (because I < q < (0) which we denote by

r n"-·i'

L CXi(Z) k i + L (3i(Z) Ui .
i=l i=l

Thus the mapping (Z1 ,... , zn-r+1) -+ «(31(Z), ... , (3n-lz)) is a continuous odd
. n-r+l

mappmg defined on the n - r + I sphere sn-r = {z : Li=1 Zi2 = I}.
Hence, by the Borsuk Antipodality Theorem (cf. [3]), there is a Zo e sn-r for
which (3i(ZO) = 0, i = 1,2,... , n - r. Moreover, by the definition of gn we
have

II gn liq ~ II Kj~o - I cx;(zo) k i II
,~1 q

~ II K{zo - v Ilq

for every function v e X n . Letting q -+ 1+ we have, for all q, I ~ q < 00

II gn Ilq ~ sup inf III - v Ilq .
fE::IC T.GO VEXn

Since X n was chosen arbitrarily we obtain the desired conclusion,

The proof of the upper bound for the n-width requires

LEMMA 3.3. Let 0 < g1 < ." < gn-r < 1,0 < T1 < ... < Tn < 1, be the
points given by Theorem 3.1 corresponding to gn . Then

K(T1, ,Tn) 0
1,... , r, g1 , , gn-r > .

The proof of this lemma is similar to the proof of Lemma 2.3. We omit the
details (see [5,6, 8] for related results). Using this lemma we define the
unique linear interpolation operator S from C[O, 1] onto Xno by the condition
that

(Sf)(T i ) = fh), i = 1,... , n.

We shall show that SUPtE.n" III - S/llq ~ II gn Ilq and since
di:i:;,oo ; U [0, 1]) ~ SUPfE.n"r.oo III _rSfllq , this will prove the theorem.
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To this end, observe that ifjE $;..00 has the representationj = k + Kh for
some k E Qr and II h !I", ~ 1 then

K(T1 , •.. ,Tn,X)
f(x) - (SJ)(x) = II 1,... , r, ~1 , ..• , ~n-r, Y h(y) dy.

° K(Tl"" ,Tn)
1, ... , r, ~1 , ... , ~n-r

Therefore

(
I
K (Tl' . . . ,Tn, X)I )q

SUp ilf - Sfll~ ~{{ 1,... , r, ~1 , ... , ~n-r, Y dy dx
[E%r.oo ° ° K (T1 , • • • , Tn)

1, ... , r, el ,...,~n-r

={
°

and because gn = p~ = k + Kh~ for some k E Qr

The last equality follows since gnCTi) = 0, i = 1,... , n, and hence Sgn = 0.
Thus the theorem is proven.

We now turn to the computation of the Gel'fand n-width of $;.,,,, .

3.2. Gel'fand n-width, p = 00, 1 ~ q ~ 00.

The case q = 00 was done in [5]. We again assume that q < 00 and define,
for n ;? r, the subspace

LnO = {f:fE C[O, l],j(r;) = 0, i = 1,2,... , n}.

LnO is a subspace of C[O, 1] and since Sf = 0, ifjE Lno, the proof of Theorem
3.2 implies that

This inequality does not give an upper bound for the Gel'fand n-width of
$;..", since by definition

dn($;..",; U[O, 1]) = inf sup II fl!q ,
L n fELnfl% r.oo

(3.7)

where the infimum is taken over all subspaces of Lq[O, 1] of codimension n.
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Clearly, Lno does not fit this requirement. However, let us "smooth" L"tJ
slightly to

) . ..~ Ti TE

LnO(e) = l:/E L"[O, I), L f(x) dx c= 0, i
. . i

For e > 0, e small, define

I, 2, ... , II~ .

.l

f(x) - (SJ)(x) = J
o

R(x, y : e) hey) dy,

where

1'1+< IT,,"< K (aI' . . . ,ar" X)· d d... a ... a
71 Tn I, ... , r, tl ,... , tn-.r, yIn

I
TrH

... I'nL<K (aI' . . . ,an) da ... da
71 Tn I, ... , r, gl ,.. " tn-r 1 n

SJis the unique element in Xno such that

fi+< (f - SJ)(x) dx = 0,
T i

I = 1,2, ... , II.

When e = 0, S< == Sand SJ - Sfl!q ~ maXX,y I R(x, y; e) - R(x, y; 0)
II hi'", . Thus

sup li/:lq ~ I gn iq +- max I R(x, y : e) - R(x, y : 0).
!ELnO(E)nfr.'XJ -"',Y

The expression max",y I R(x, y; e) - R(x, y; 0)1 goes to zeros as e -+ 0"- and
thus II gn Ilq does provide an upper bound for dn($',..oo ; U[O, In.

The fact that II g Ilq is a lower bound for the Gel'fand n-width is proven in a
fashion similar to the proof of Theorem 3.2. The argument goes as follows:
if L n is a subspace of codimension n of U[O, 1] with SUP!EL 0n.JC lifilq < OC,

then L n n Qr = {O}. Thus if n T.ro

L n = {.f:fEU[O, 1], (Ui,f) =O,i = I, ... ,n},

where U1 , ... , Un are linearly independent functions contained in U'[O, 1],
then the matrix «Ui , k;)) has full rank r. We may assume without loss of
generality that det«ui , kj))i,1~l. .... r =1= 0. Setting

K(x, y) k1(x) kr(x) (Ut, k 1) (u1 ,kr )

N(x, y) =
(Ul , K(-, y)) (u1 , kI ) (uI , k r)

(un K(-, y)) (u r , k I ) (u r , k r) (Ur , k 1) (u, , k,)
(3,8)
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then fE L n (\ .Yt:"oo, i.e., f = k + Kh E L n , for some k E Qr, II h 1100 ~ 1, if
and only iff = Nh and (Vi, h) = 0, i =r + 1, ... , n where Vi = NTUi . Now,
by the Hobby-Rice theorem, [2], there is an hs , S = (S1 ,... , Sk), °~ k ~
n - r, such that (Vi' hs) = 0, i = r + 1,... , n. Hence fo = k + Kh s E L n for
some k E Qr . Therefore we conclude by the minimality property of gn that

Since L n was an arbitrary subspace of codimension n of U[O, 1], we finally
obtain

Incidentally, we may in the proof of the lower bound allow L n to be chosen
from the larger class of subspaces of codimension n of qo, 1] and still obtain
the same result. Perhaps, it is best that we extend the definition of the Gel'fand
n-width to make this remark precise.

For a subset ot of a normed linear space (X, 11 • II) and a set (Y of linear
functionals defined on ot we let the Gel'fand n-width of ot relative to X and (Y
be

dn(ot; X, m= inf sup i x Ii
L n XELn

where L n = {x : x E ot, FiX = 0, i = 1,... , n} and the infimum is taken over
all F1 , ..• , Fn E (Y. If (Y = X* (norm dual of X) then from our previous defini­
tion

Thus we may conveniently summarize our previous remarks in

THEOREM 3.3.

dn(.Yt:"oo; U[O, I]) = d"(f,·,oo; U[O, I], C*[O, 1]) = 00,

II gn !Iq,

n < r,

n ;:?: r,

and for n ;:?: r, Lno is an optimal subspace (of C*[O, 1]) for the Gel'fand n­
width of .Yt:"oo .

3.3. Kolmogorov n-width, 1 ~ p ~ 00, q = 1

The case p = 1 was previously done in [6]. Although p = 00 was done in
Section 3.1 the following discussion also holds in this case. Thus we assume
1 < p ~ 00. For this problem we need
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THEOREM 3.4. Given any n, r with n rand p, 1 < P co, there exists
an YJ E An such that for any t E An satisfying the condition

(k" ht) == 0, i = 1" .. , r, (3.9)
we have

(3.1 0)

Moreover, t = YJ satisfies (3.9) and KThn has exactly n - r distinct zeros in
(0, 1) at , E A n- r • Hence

The proof of this theorem is similar to the proofs of Theorems 2.1 and 3.1.
We omit the details.

We are now ready to compute n-widths. Let us first define

and
Lnl = {f:fE qo, 1],J(YJi) = 0, i = 1,2,... , n}.

THEOREM 3.5.

dn(.Yt;,p; V[O, 1]) = 00,

= il KThn lip',
n < r,

n ~ r,

andfor n ~ r, Xnl is an optimal subspace for the n-width of .Yt;.P .

Proof We first prove the lower bound. Let X n be any n-dimensional
subspace of V[O, 1] such that o(Jf;.,p; Xn) < 00. Then Qr C Xn and by the
Hobby-Rice Theorem there exists a tEAk, °::;: k ::;: n, such that the norm
one linear functional F(y) = (y, ht) annihilates Xn . Thus we conclude that

and keeping in mind that Qr C Xn this simplifies to

o(Jf;..P; X n) ~ Ii KTh t lip'
~ II KThn lip"

The arbitrariness of X n implies that the desired lower bound is valid.
The reverse inequality requires

LEMMA 3.4.

K (YJ1' . . . ,YJn) °
1, ... , r, '1 ,...,'n-r > .
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The proof of this lemma is similar to that of Lemma 2.3 (see [5, 6, 8] for
similar results). Therefore we may define an interpolation operator
T: e[O, 1] -+ Xn

1 by the conditions

(Tf)(?]i) = f(?]i), i = 1,... , n.

Then as in Theorem 3.2, iff = k + Kh, k E Qr, II h lip ~ 1, we have

K (?]1' . . • ,?]n, X)
f(x) - (Tf)(x) = II I, ... , r, '1 ,...,~n-r ,y h(y) dy

o K (7)1' . . . ,?]n)
1, ... , r, ~1 , ... , 'n-r

and

sup Ilf - Tflll
fEY(" T••

( (
I ( X)

I
)

pI )1 /PK ?]1' . . . ,?]n,

~ II I' I,,"", " ",""", ,.-" Y dx dy
o 0 K (7)1' . . . ,?]n)

I, ... , r, '1 ,...,'n-r

( ( )

P' )I/P'K ?]1' . . . ,?]n, X

= II II k...,r, '1 ,...,'n-r ,y) h,,(x) dx dy .
o 0 K (?]1' . . . ,?]n)

1, ... , r, '1 ,...,~n-T
Since (k i , hn) = 0, i = 1,... , r, and (K(', 'i), hn) == 0, i = 1,2,... , n - r, the
above simplifies to

Thus

Finally, we have

3.4. Gel'fand n-width, 1 ~ p ~ 00, q = 1

Again p = 1 was done in [6] while p = 00 is included in Subsection 3.2.
We assume here that 1 < p ~ 00.

THEOREM 3.6.

dn(f."p; V[O, 1]) = 00,

= II KThn lip' ,
n <r,
n ;?: r,

andfor n ;?: r, L nl is an optimal subspace for the n-width of f."p .
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Actually (see the proof of Theorem 3.3) L" I is a "nearly" optimal subspace.

Proof The upper bound

follows from the proof of Theorem 3.5.
For the lower bound, we let L n be any subspace of finite codimension n of

£1[0, lJ such that SUPfEL n;Y{' 'Ifill < 00. Hence
n r,p

and L n {f:fE£1[O, I), (Ui,j) =O,i ~= I, ... ,n}

for some linearly independent functions UI , ... , Un E L"'[O, lJ. Let N(x, y) be
as defined in (3.8) and set Vi = NTUi . The lower bound argument given in
Section 3.1 may be modified to prove that there is an S = (SI ,... , Sk), °~ k
~ n, such that (k i , hs) = 0, i = 1,... , r, and

Ii KThi 11,) = ",;~i~"n Ii KThi - L ['i,iVi
i=r+l

To accomplish this, let fz(x) be as in Section 3.1 for Z E S" =, {z = (ZI , ... ,

Zn+1): L~:ll Zi2 = l}. For 1 < p' < 00, let O:r+1(z), ... ,O:n(z) be the unique
coefficients in the best LP' approximation to KTfz from the subspace spanned
by V,'.rl ,... , Vn . We define an odd, continuous mapping of sn into Rn by
Z -+ «ki ,fz),... , (kr ,fz), ['i,r+1(z),,,,, O:n(z)) and again apply the Borsuk
Antipodality Theorem and obtain a Zo E Sn for which (k i ,fz) = 0, i = I, ... ,
r, O:i(ZO) = 0, i = r + 1, ... , n. Then hs CC~ ~j=fz serves our purpose.

Since the best LP' approximation to KTh s by the subspace spanned by
Vr+I , ... , V n is zero, we necessarily have the orthogonality relations (g, Vi) = 0,
i = r + 1, ... , n where g = sgn KThs i KThs [p'-I. Let w = gill g lip. Then
IV E £1>[0, 1J with II IV lip = I and fo Nw E L n n Jf;.P (see the discussion
in Section 3.2). Hence

and because (k i , hs) = 0, i = 1, ... , r, we have

Letting p' -+ I+ completes the proof.
As was indicated, the prototype for the class of sets considered in this

section is k;(x) = xi-l,j = I, ... , rand K(x, y) = (l/(r - l)!)(x - y)~-l since,
in this case, Jf;,.v is simply a ball of the Sobolev space. We specialize belmv
the results of this section for this specific class of functions.
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DEFINITlON. A perfect spline on [0, 1] of degree r with m knots {gi}I':1 ,°,= go < g1 < .. , < gm < gm+l = 1, is any function P(x) of the form

r-l m f;+1

P(x) = L aixi + c I (-l)j f (x - y)~-1 dy,
i~O j~O ~i

where, as usual, x+r = x r if x ;? 0, and zero otherwise.
Let fYm denote the class of perfect splines of degree r with at most m knots

with !p<rl(x) =1 a.e. on [0,1], and let Qm={P:PEfYm , P<il(O) =
p<i)(l) = 0, i = 0, 1,... , r - I}. Theorems 3.1 and 3.4 reduce to the following

COROLLARY 3.1. Let 1 ~ p < 00, and Pm,p E fYm be any perfect spline
which attains minpE9'm [I P lip· Then Pm.p has m distinct knots in (0, 1), and
exactly m --;- r zeros in (0, 1), each one a sign change.

COROLLARY 3.2. Let 1 ~ p < 00 and m ;? r, and let Qm.v E Qm be any
perfect spline which attains min QEQm II Q Ilv . Then Qm,p has m distinct knots in
(0, 1) and exactly m - r zeros in (0, 1), each one a sign change.

Let 8#r,p = {f: f(r-1) abs. cont., Ii f(rl lip ~ I}. Then from Theorems 3.2
and 3.3 we have

COROLLARY 3.3. For 1 ~ q < CD,

dnCJJJr.oo; Lq[O, 1]) = d"(&8r,oo; U[O, 1]) = Xl, n < r,

II p,,-r.q Ilq, n ;? r,

and for n ;? r,

(i) XnO = [1, x, ... , x r- 1, (x - g1)~-\"" (x - gn_r)~-1], where the {gi}i~{

are the knots ofPn-r.q , is an optimal subspace for the n-width dn .

(ii) Lno = {f:fE C[O, 1],f(Ti) = 0, i = 1,... , n}, where the h}~~1 are
the sign changes ofPn-r,q , is an optimal subspace for the n-width dn.

From Theorems 3.5 and 3.6, we have

COROLLARY 3.4. For 1 < p ~ CD,

dn(.'JlJ",p; U[O, 1]) = d n(&8r,p; U[O, I]) = CD,

II Qn,p' lip',
n < r,

n ;? r,

where lip -'-- lip' = 1, and for n ;? r

(i) Xnl = [1, x, ... , x r-1, (x - ~1)~-\'''' (x - ~n_r)~-l], where the gi}i~{

are the sign changes ofQn.p·, is an optimal subspace for the n-width dn .
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(ii) L n1= U:fE qo, 1], !(TJi) = 0, i c= 1,... , n}, where h};~1 are the
knots of Qn,p', is an optimal subspace for the n-width d n .

Note that by setting q = 1 in Corollary 3.3 and p = 00 in Corollary 3.4,
it follows that I! Pn-r,1 III = II Qn,1 111 and the knots of Pn-r-l may be taken as
the sign changes of Qn,l and vice versa.

Let

(J
l (Jl )P/q )l/P

I K Ip,q = 0 0 I K(x, y)lq dy dx

where 1 ~ p < 00, 1 ~ q < 00. If q = 00 andlor p = 00, then the usual
definitions apply. We use, as before, the pairing (u, v) = f~ u(x) v(y) dy for
UEU,VEU', lip -+- lip' = 1.

We study

E~,Q(K) = inf 11 K ~ itl Ui ® Vi 1
1
1'Q : U1 ,.", Un E U[O, 1],

l\ , ... , Vn E LQ[O, 1)( , (4.1)

where
(Ui ® v;)(x, y) = Ui(X) v;(y),

and shall make use of the results of Section 3 with r = 0. For convenience,
~,p shall be denoted by Jf;, . Thus

.%';, = {Kh : II h !Ip ~ I}.
Also, let

Before proving this theorem let us observe that the above n-widths, when
n = 0, are given by

do(.%q·; prO, 1]) = do(ff:;.; U[O, 1])

= sup II Kh qp
Ilhllq·,:;;t
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The right-hand side is the operator norm of K as an integral operator acting
on Lq'[O, 1] into £P[O, 1]. Now, by Holder's inequality, for hE Lo'[O, 1],
g E £P'[O, 1]

Thus since

we have

I(Kh, g)1 = I( ( g(x) K(x, y) hey) dx dy I

1 ( 1 1/0

~ f Ig(x) I f I K(x, y)lo dy) dx II h Il q '
o 0

~ I K [v.o II g Ilv' II h 110' .

sup I(Kh, g)1 = II Kllv,q,
Ilhllq,~l

I!gllp,~l

II K Ilv q ~ I K Ip,q = E~,q(K)

(4.2)

which proves the theorem for n = 0.
Now, for general n we prove the theorem by returning to (4.2) to see that

for U1 , ... , Un E LP[O, 1], VI, ... , Vn E Lo[O, 1]

1((K - ~1 Ui @ Vi) h, g)1 ~ IK - ~1 Ui @ Vi Ip,g II h Ilg' II glip' .

Thus we have

II Kh - f Ui(Vi, h)[[ ~ IK - f Ui @ Vi I 11 h Ilg'
,~1 i~1 p,g

and

[I KTg - f Vi(Ui ,g)11 ~ IK - t Ui @ Vi I II g lip' .
,=1 g ,~1 p,g

The first inequality implies that

while the second gives

Therefore Theorem 4.1 is proven for all n.
It is hardly surprising that this inequality is not always sharp. The basic

comparison (4.2) between II Kllp,g and IK Ip,o relies on two applications of
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Holder's inequality which certainly eliminates, for all but special choices of
p, q and kernels K(x, y), equality from occurring. A particularly striking
example of this occurrence is the case p ,- q cc 2. We have already mentioned
that E. Schmidt showed that

However, the lower bound from Theorem 4.1 is merely

Neverheless, we have

THEOREM 4.2. Let K be a nondegenerate totally positive kernel. Then for
any n ?;: 0, 1 ~ p ~ 00

Moreover,

where

and t1 ,... , tn, T1 ,... , Tn are obtained from the function gn,o,v given in
Theorem 3.2 where r = 0 and q is replaced by p. Furthermore, {UiO(X)}~ and
{ViO(y)}~, as defined in Theorem 2.2 with respect to the above {ti}~ and {Ti}~'

are an optimal choice in the solution of(4.1).

Let us observe that for any kernel!! K Iloc.1 = I K 100,1' Thus when p = 00,

the above theorem is proved in [5]. Note however, that for p < 00, I! K Ilv,l is
not always equal to I K IV,l .

Proof At this point, we have accumulated sufficient information on
widths so as to facilitate the proof of this result. We observe that for 1 ~ P

<00

= ({ ({ I E(x,y)! dyf dxt
v

u 0

= (f (I f E(x, y) h~(y) dy Ifdxt
v
.
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Furthermore, since 0= gn.O,iTi) = f~ K(T;, y) hky) dy, i = 1,2,... , n, we
have

= (( ([ ( K(x, y) h~(y) dy Ir dxt p

= \1 gn.O,1J il,) .

We now incoke Theorem 3.2 for r = 0, and q replaced by p to conclude that
dn(::fa:;; L1J[O, 1]) = II gn.o.1> 111>' Hence equality is achieved in Theorem 4.1
and, in addition, dn(::f;,; Ll[O, 1]) :( II gn,O,p lip.

However, from Theorem 3.5 (with I = 0, p replaced by p', and K by KT),
it follows that

This last equality follows from the definition of II gn,o,,, II" .
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